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ABSTRACT

The autonomous formation flying control algorithm developed by the Goddard

Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth

Observing-1 (EO-1) mission is investigated for applicability to libration point
orbit formations. In the EO-1 formation-flying algorithm, control is

accomplished via linearization about a reference transfer orbit with a state

transition matrix (STM) computed from state inputs. The effect of libration point

orbit dynamics on this algorithm architecture is explored via computation of
STMs using the flight proven code, a monodromy matrix developed from a N-

body model of a libration orbit, and a standard STM developed from the

gravitational and coriolis effects as measured at the libration point. A
comparison of formation flying Delta-Vs calculated from these methods is made

to a standard linear quadratic regulator (LQR) method. The universal 3-D

approach is optimal in the sense that it can be accommodated as an open-loop or
closed-loop control using only state information.

Introduction

The Guidance, Navigation, and Control Center (GNCC) at GSFC is currently demonstrating an

enhanced autonomous formation flying (EFF) system. In future missions, autonomous systems

are expected for not only low Earth orbit formations, but libration orbits as well. In anticipation
of such missions, the GSFC GNCC is investigating options for closed-loop autonomous

navigation and maneuver control of satellite formations that is based on libration orbit dynamics.

As a stepping stone to next generation Earth sciences missions and technologies, the Folta-Quinn

[Folta-98] algorithm was selected to be flown as a new technology onboard the NMP Earth

Observing-1 spacecraft. A major accomplishment of the NMP EO-1 mission is successful
completion of numerous paired scene observations with Landsat-7 to validate advanced mapping

technology. To enable the paired scene process, the EO-1 spacecraft must fly in formation with
Landsat-7, maintaining the same groundtrack as Landsat-7 within 3-km as shown in Figure 1. A

minimum along-track separation of nominally one-minute is necessary to achieve this goal.
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Figure 1. EO-1 Follows Landsat-7 By One Minute

BACKGROUND

Formation Flying Mechanics and Definitions

Formation flying involves position maintenance of multiple spacecraft relative to measured
separation errors. It therefore demands use of an active control scheme to maintain the relative
positions of the spacecraft. Ultimately, this will be performed autonomously onboard the
spacecraft, in a manner similar to that which is already demonstrated by GSFC for the EO-1
mission.

Autonomous orbit control of a single spacecraft requires that a known control regime be
established by the ground that is consistent with mission parameters. This data must then be

provided to the spacecraft. When orbital perturbations carry the spacecraft close to any of the
established boundaries, the spacecraft reacts (via maneuver) to maintain itself within its control

box. Once a control box is provided to the spacecraft, no further ground interaction is required.
Enhanced formation flying takes the next step up the technological ladder by permitting the
spacecraft themselves to establish where their own control boxes should be. This requires
cooperation between all the members of the formation, and therefore a depth of communication

between all the individual satellites that is not practical (or in some cases even possible) from the
ground. This may occur through cooperative "agreement" by controllers of all the spacecraft in
the formation or by maintaining a relative position from a designated 'lead', or by some hybrid of
these two methods.

The analysis presented here is based on combining the work of the EO-1 EFF program, recent
advances in the modeling of the libration orbit dynamics in terms of dynamical systems, and
standard control methods. This work begins to extend the approach to realistic libration orbit

control cases by developing the linear system required for the control framework via linearization
of the non-linear dynamics of circular restricted three body (CRTB) motion.

CRTB Control

Problems of single spacecraft control of circular restricted three-body (CRTB) motion have been

previously investigated using state-space equations to characterize the linearized equations of
motion ([Hoffman-93], [Wie-98]). State-space analysis methods in control theory provide a

useful framework for defining goals and the optimal control of satellites designed to fly about a
reference orbit. We advance formation flying control using state-space by incorporating control

algorithms into a proven algorithm. The mathematical foundation for the explanation of CRTB
motion will be briefly addressed, but only to the degree required to understand the results of the

simulations presented.



A State Space Model
As with the current literature about this subject we use three-dimensional Cartesian coordinates

denoted by capital letters to describe a system with an origin at the barycenter of the primary
bodies and small letters will be used for an origin at a libration point. Figure 2 illustrates the

coordinate system and sample orbit that will be used here. Here m is an infinitely small mass in
the gravitational field of the primary bodies M, and M2.
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Fig. 2: Coordinate system and sample libration orbit

The Iinearized equation of motion for m close to the libration point is:

#- 2nj_=U xxx , .i;+2nJ=Urry,and _=Uzzz

where Uxx OX----5-,O2UUrr 02U O2U= =_-_-,,, and Uzz = 0--_-" Uxx, Un, and Uze are calculated at the respective

libration point to get the respective equation of motion and are constants. As a result of

the linearization, x and y are coupled whereas z is now completely independent and is a simple
harmonic. These equations can also be written in state-space form as below where x" represents
the

xJ = AJx j where
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state of the jth spacecraft in the formation.

following sections.
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This is one of the forms that will be used in the

GSFC Controller Application
The GSFC Formation Flying Algorithm is adaptable to generic formation flying problems and
permits full closed-loop three axis orbital maneuver autonomy onboard any spacecraft. This

algorithm, being demonstrated on the Earth Observer-I formation flying mission, solves the

position maintenance problem by combining the boundary value problem, initial and target states,

and Battin's 'C*' matrix formulation to construct a state transition matrix. In this example, the
goal of the algorithm is for a spacecraft to perform maneuvers which cause it to move along a

specific transfer orbit. The transfer orbit is established by determining a path which will carry the

spacecraft from some initial state, (r 0, vo), at a given time, to, to a target state, (rt, vt), at a later



time, tt. The target state found will place the spacecraft in a location relative to the control

spacecraft so as to maintain the desired formation. Back propagating the target state to find the

initial state the spacecraft would need at time to to achieve the target state at time tt without

executing a maneuver gives rise to the desired state, (rd, Vd) at time to. The initial state can now
be differenced from the desired state to find:

(_:3 = (vr:--:dr3 (3.24)

The original application of the FQ algorithm used a state transition matrix calculated using
universal variables and the F&G series in a two-body formulation. For the application here, we
derive the state transition matrix using the matrix exponential as shown above. That state

transition matrix is then partitioned as follows:

_,(to,t,),_2(to,t,)]=IR'(to),R'(to)] [vr(tt),-Rr(t,)] -,

_(t°'t')- ¢b3(to,t,),_4(to,t,)j [Z'(to),V'(to)J=[--ffF(_),v-_j)J =_(t''t°)

Where the starred quantities are based upon the position/velocity partitions of _(to,tt), and

unstarred quantities are based on a _(tt,t0), which Battin calls the guidance matrix and navigation
matrix respectively. If a reversible Keplerian path is assumed between the two states, one should

expect the forward projection of the state from to to tl to be related to the backward projection of
the state from tl to to. From these sub-matrices, a C* matrix is computed as follows:

v'(,o)[R'(,o)]'
The expression for the impulsive maneuver applied herein follows immediately:

[C'(t )]bV = o 8ro- 8v0

Mondromy Matrix

The computation process of the stable and unstable manifolds for a libration point orbit is

associated with particular orbit design parameters and is accomplished numerically in a

straightforward manner. The procedure is based on the availability of the monodromy matrix (the
variational or state transition matrix after one period of motion) associated with the libration point

orbit. As with any discrete mapping of a fixed point, the characteristics of the local geometry of

the phase space can be determined from the eigenvalues and eigenvectors of the monodromy
matrix. These are characteristics not only of the fixed point, but of the libration point orbit. The

local approximation of the stable and unstable manifolds involves calculating the eigenvectors of

the monodromy matrix that are associated with the stable and unstable eigenvalues. Using this
information, this approximation can be propagated to any point along the halo orbit using the
state transition matrix.

Summary.

The intend is to develop STMs via mathematically proven systems developed by GSFC for

libration orbits and use them in an augmented EO-I formation flying algorithm for realistic
control of formations in libration orbits. The use of the Mondromy matrix, a STM, contains more

dynamical information of the libration orbit than does the pseudo-gravitational matrix of the

libration point itself. These changes from a Two-Body to a Circular Restricted Three Body
approach provides a flight proven formation flying system that is suitable to libration orbit
missions.
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